液晶是一类分子取向长程有序的各向异性材料,其在显示、感应、光子器件等领域有广泛应用。研究团队首先利用自搭建的装置,通过预设计的方式控制偶氮苯分子机器排列,从而控制液晶微结构自组装,并制备了可编程控制的向错线网络。在光驱动作用下,偶氮苯分子机器的协同作用引起衬底表面液晶微结构分子取向的变化,从而引发样品内部向错网络的群体动力学形态变化。如果将胶体颗粒置于此远离平衡态的系统中,随着光驱动向错线网络的形变,胶体颗粒可以被灵活地捡起、运输和重新组装。不仅如此,胶体自组装的集体运输和重组还可以通过控制照射光的偏振方向,控制它们运输的方向和方式,比如平移、以顺时针方向或者逆时针方向旋转,从而实现了微米尺度胶体颗粒的可编程《开云苹果》自组装。
研究过程中,研究团队还阐明了,预设计的拓扑缺陷如何控制胶体颗粒在向错线上的运动机制,此机制由液晶局部预设计的展开和弯曲形变的弹性特性来决定。因此,此光驱动可编程胶体自组装的物理机制在于,通过光照使纳米尺度的分子机器进行协同重组,利用分子机器与液晶分子的相互作用控制纳米尺度液晶分子取向的变化。由于液晶分子具有长程有序的特性,引发表面宏观尺度液晶分子取向的变化。此宏观变化进一步通过表面锚定驱动样品内部液晶微结构的变化,从而实现了宏观尺度的向错线网络和胶体自组装的重构。
研究人员表示,这项研究最令人兴奋的事情之一是驯服一个复 ♎杂的量子系统:十万个原子核与一个控制良好的电子自旋强烈耦合。 ☽大多数研究人员通过消除所有相互作用来解决将量子位从噪声中分离 ☸出来的问题 ⚓。他们的量子位变得有点像被镇静了的薛定谔的猫,无论 ⚽任何人拉动它的尾巴,它都无法作出反应。而新研究中的“猫”像是 ☻服开云苹果用了强效兴奋剂。
武汉和杭州,也正在向两万亿元大关迈进。
本报记者 王廷魁 【编辑:崔纪 】