一根长长的“自拍杆”探入麦丛中,或深或浅,动作迅速,像“扫雷”一样。在安徽宣城市宣州区,中科院合肥智能机械研究所博士杜健铭,正和同事在麦地里忙着给麦上的害虫们拍照片。
中科院合肥智能机械研究所博士 杜健铭:一般蚜虫的聚集都是在这个位置有一片聚集,现在看起来还挺不错的,然后你看整个杆子,我们伸下去的话,这么扫过来也没有害虫,小麦根下面好像也没有,整个茎秆下面都蛮干净的。
“自拍杆”如何实现“虫脸识别”呢?杜健铭手持的“自拍杆”,配有高清摄像头和智能终端,只需将设备探头伸进麦田,轻轻点击手机的拍摄按钮,就完成了图片采集。
中科院合肥智能机械研究所博士 杜健铭:手机的作用不只是用来收照片,同时还可以把我们随时随地拍出来的照片上传到服务器进行储存。
在专用的手机软件上,杜健铭拍摄的虫子,都被智能系统自动打上了框。同时,系统会在后台分析出害虫的种类、数量,以及虫害发生等级。这些病虫害对农业生产的影响巨大,为了从“虫口夺粮”,需要定期对农作物病虫害进行监测。但传统的计算办法是一只只地数,费时费力不说,也无法保证数据的准确。
如何把人工智能和农业相结合,让农业更智慧?是杜健铭和他的科研团队一直在思考的问题。不过,虫脸识别可不同于人脸识别。有些害虫的相似度极高,用普通的人工智能技术,难以区别分类。
中科院合肥智能机械研究所博士 杜健铭:虫子一般来说都很小,我们真正做的事情,不止识别它是不是蚜虫,同时还要知道,这些蚜虫《皇冠如何注册账号微信》到底有多少只。为了我们之后去判定这一片田中平均的虫害和病害发生的数量,用来评估这边发病的受灾等级。整体来说,是要比人脸识别张三还是李四要难上一个等级的。
为了逐步突破“虫脸识别”的难点,杜健铭和团队几乎走遍了省内各个县市,对田间害虫进行数据采集,不断积累样本,优化数据库。目前,“虫脸”数据库已收集包括700多万张图片,500多种病虫害“相貌”,覆盖小麦、水稻、油菜等29种农作物和经济作物,识别准确度在80%以上。巨大的数据库,让害虫无处遁形。
6月7日一大早 ♏,丹东市消防救援支队后院就停满了私家车。 ⛎为切实做好全市高考期间的消防执勤保障工作 ♐,给广大考生营造良好 ♋的考试环境 ➣,支队在6月7至6月9日高考期间,全市10个消防救 ☺援站全部对外开放,设立“高考便民服务点”和暖心标语 ⏫,送考家长 ❦的私家车可以免费停放 ♏,皇冠如何注册账号微信同时为考生提供矿泉水、巧克力、2B铅笔 ⛳和橡皮等爱心助考物品 ♑,缓解考点周围交通压力,提供暖心服务。
2022年11月初,俄军最终选择从赫尔松西岸撤军的一大 ⛲理皇冠如何注册账号微信由就是大坝被搞掉后 ♓,难以收拾残局,这在当时俄军总指挥苏罗维 ⛅金的对外采访中,也是可以确认的 ☼。
本报记者 吕布 【编辑:杨劲松 】